The Challenge

How to accurately detect, quantify and predict osteoporotic fractures in elderly patients?

Osteoporosis is a disease characterized by the loss of mass and degradation of the internal structures of the bone. The difficulty of detection of osteoporosis-related fractures is leading to a lack of diagnosis and timely provided treatment.

The main challenges in diagnostics of osteoporosis provide an optimal use case to use AI-supported software: 

  • Low detection: it is estimated that in 80% of the high-risk patients, the disease is not identified nor treated adequately 
  • High discrepancy - 62.5% discrepancy between specialists and assistant physicians 
  • High error rate - 69% of the fractures were not immediately detected (an increase of 14% high workloads)

All this results in problems with case prioritization and patient outcomes.

The Solution

An example of applying AI-supported software to improve the detection of osteoporotic fractures using established and novel imaging biomarkers 

IB Lab GECKO is a fully automated software application intended to assist physicians in the measurement of vertebral heights; and an assessment of the presence or absence of vertebral fractures based on the Genant Grade criteria. Moreover, GECKO deploys proprietary bone microarchitecture algorithms which provide valuable insights into the strength and quality of the bone. Such insights can be instrumental in predicting a fracture, giving the physician time to apply the bone-strengthening treatment. 

IB Labs GECKO is unique in its way of achieving a zero-click, seamless integration into existing reporting workflows. Industry-standard output formats enable customizable report generation.  Results are calculated within seconds, stored in PACS, and are available in the DICOM viewer as printable PDF reports for the referring physicians.

Opportunities for physicians and patients

Novel imaging biomarkers will enable a change of management by applying medication even before a fracture has occurred 

  • Pre-screening of studies reduces the chances of missing a fracture and prioritize patients who need to be sent to a Fracture Liaison Service
  • Automated time series analysis of fracture progression can be linked to treatment impact and progression
  • Novel imaging biomarkers complement existing diagnostic standards, strengthening the detection and prediction of incident osteoporotic fractures. Targeted treatment has the potential to reduce suffering and improve the quality of life of patients affected by Osteoporosis

Das sagen unsere Kunden:

Jack Farr - Orthopedist

Die KI-Software von ImageBiopsy ist innerhalb unseres PACS-Systems hochpräzise und effizient, dadurch erhalten wir wertvolle Informationen über den Status des Knies entlang des Kontinuums von Chondrose zu Arthrose.

Jack Farr, MD
Orthopäde

Die Integration der KI-Lösungen von ImageBiopsy Lab in unser RIS und unser PACS ist simpel. Es macht Spaß, damit zu arbeiten und der visuelle Bericht ist eine ideale Unterstützung bei der Beratung unserer Patienten.

Dr. med. Mueller-Stromberg
Orthopäde

KI-basierte Lösungen sind weniger arbeitsintensiv und die Befunde sindgenauer. Man erhält einen objektiven Wert, der zur Überwachung und Prognose des Verlaufs genutzt werden kann. Wir bieten etwas, das andere nicht haben.

Priv.-Doz. Dr. Gruber
Radiologe

Eine genaue Diagnose und reproduzierbare Nachuntersuchungen sind für eine erfolgreiche Arthrosetherapie unverzichtbar. Software-basierte Verfahren können dem medizinischen Fachpersonal bei der Steuerung und Anpassung der Behandlung unterstützen.

Prof. Jochen Hofstätter, MD
Orthopäde